INTELIGHT MAXTIME ADAPTIVE 2.0

LOCALLY-DISTRIBUTED ADAPTIVE SIGNAL CONTROL TECHNOLOGY

HIGHLIGHTS

- Provides adaptive cycle, offset, and split optimization.
- Uses high resolution data (1/10 th second logged on local controller)
- Uses widely accepted algorithms such as Purdue Link Pivot and Harmonic Cycle Length selection.
- Uses distributive processing to optimize signal timings.
 No need for a master or system processor
- Runs alongside MAXTIME local signal control software on the industry- standard ATC API.
- · Provides dedicated web and text user interfaces.
- Delivers robust peer-to-peer synchronization mechanisms.

- Compatible with transit priority, preemption, advanced phase & coordination options, user logic, etc.
- Provides quick and efficient transition between plans when coupled with MAXTIME local signal control transition algorithm.
- Requires detection standards consistent with Purdue, INDOT, UDOT Signal Performance Metrics (SPM) requirements.
- Delivers corridor-based optimizations with the ability to handle crossing corridors.

A UNIQUE PLATFORM

- · Communicates via peer-to-peer between controllers.
- · Does not require a system/master field processor.
- Enables database editing through an onboard web server using a web browser—no proprietary database editor is required.
- Allows you to monitor and modify configurations from Windows and Apple computers, IPADs, tablets, smart phones without special software
- stores and loads hundreds of configuration databases on the controller
- Automates software updates via network or USB flash drive while intersection continues to run traffic signal operations
- Writes optimized timings to MAXTIME local signal control

INFRASTRUCTURE REQUIREMENTS

DETECTION REQUIREMENTS

- Compatibility with radar, video, inductance loop, magnetometer and various other detection technologies
- For cycle/offset optimization, advanced detection on the coordinated/mainline should be placed in advance of normal queueing 300–600 feet from the stop bar.
- For split optimization, stop bar detection on all approaches.

HARDWARE/SOFTWARE

- Intelight ATC with 1883 engine board or newer (NEMA or 2070) with ATC API.
- · Intelight MAXTIME local signal control software.
- Ethernet communications via fiber, wireless, or Ethernet over copper between signal controllers.

WHAT IT CAN DO

CYCLE/OFFSET OPTIMIZATION

- Optimize vehicle capture rates based on detector calls and a coordinated window using 1/10th second highresolution data.
- Enable customizable, user-defined calculation periods, cycle length optimization ranges required for change.
- Calculate and protect minimum corridor cycle time from
- MAXTIME local signal control (with optional pedestrian protection).
- Optimize the corridor and synchronize results with controllers using peer-to-peer, distributive processing.
 No master or lead controller is required in the network.

SPLIT OPTIMIZATION

- Balance splits using approach/stop bar occupancy at local intersection.
- Balance time across rings and barrier groups to ensure optimum and equal split utilization across all phases of the intersection.
- Uses a combination of green occupancy (OCCGRN) and detector occupancy during the first five seconds of phase movement red (ROCC5-sec).
- Make split adjustments based on a user defined sliding scale of approach priority.

